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quartz and the softer materials  gypsum, fluorspar and 
mica in tha t  quartz appeared equally imperfect  in both 
radiat ions whereas the other crystals when freshly 
cleaved appeared much more near ly  perfect in the 
longer wave-length X-rays.  This m a y  be a consequence 
of a variat ion of perfection with depth or of the g rea~r  
perfection along a surface than  at right-angles to it in 
the crystals with a good cleavage. 
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The error introduced into a multidimensional Fourier synthesis by approximations made in the 
course of computation is compared with that due to random errors in the amplitudes of the Fourier 
components. It is shown that the Beevers-Lipson method of Fourier summation, normally em- 
ployed in crystallographic work, is an entirely adequate method of calculating the electron density 
unless the structure amplitudes have been measured to an accuracy such that their standard 
deviation is less than 2, in the customary units. 

Introduction 

As a result of improvements  in the experimental  
techniques of X-ray  crystal lography it has become 
possible to determine not only the gross structure of 
molecules but  also to measure the electron distr ibut ion 
in regions dis tant  from the atomic eentres and hence to 
investigate directly the bonding between atoms. The 
pract icabi l i ty  of this procedure has been demonstrated 
by Brill, Grimm, H e r m a n n  & Peters (1939). Electron 
density maps obtained in this way are inaccurate for 
three reasons: 

(a) The coefficients of the Fourier series in terms of 
which the electron distr ibut ion is expressed are subject 
to, at  best, random error of measurement.  This is of 
course the fundamenta l  source of error. 

(b) The Fourier series is necessarily terminated at 
finite limits. This difficulty has been discussed fully 
elsewhere (Bragg & West, 1930; van Reijen, 1942); it is 
sufficient for our purpose to note that  it can be sur- 
mounted.  

(c) Approximat ions  are generally made in com- 
put ing the Fourier  synthesis. I t  has been s h o ~  
(Booth, 1946a) tha t  in practice the Beevers-Lipson 
method leads to insignificant errors in the atomic 
co-ordinates. In  view of the many  projects under 
consideration which would increase the accuracy 
and/or reduce the labour of computing mult i-dimen- 
siGnal Fourier  syntheses it would be interesting to 
know to what  extent  this result holds for the electron 
density. 
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Effect of  experimental error 

For ease of presentation the discussion will be confined 
to centrosymmetrical distributions which can be re- 
ferred to orthogonal axes. The electron density is then 
given by 

8 H K L hx cos ,  ky cos 2~r lz 
p (xyz)= ~ Z Z Z F (hkl) cos 27r - -  . - .  

0 0 o sm a sin z~r-~- sm c 
(1) 

The form of the trigonometric function associated with 
a given F (hkl) depends on the space group. Let 
fl (hkl) be the error of a given F(hkl) .  The electron 
density at  (x, y, z) is then in error by 

~p = ~ B cos _ hx cos 27r/__z cos 8 Z Z Z . ( h / c / )  . 2 , - -  . . 27r . (2) 
sm a sm c sm 

This quant i ty  may be characterized by a standard 
deviation 

A1 = ( (~p)~i~ = 8 (117 ~)~ / v  

from (2), where N, which is equal to the number of 
reciprocal lattice points in the unique volume of the 
limiting sphere, is the number of terms in the series. 

.'. N=47rlaV*=4rtV/3A 3 and A~=(S2rrf12/avAa) ½. (3) 

This result can be shown to apply to all centrosym- 
metrical distributions. 

Errors of  computation 

The method most widely used in practice to sum the 
series (1) is tha t  of Beevers & Lipson (1936)• Prepared 
cards (' strips ~) give values, to the nearest integer, of 

the functions C cos hm 6 ° for integral values of C, h and 
sm 

m, and the summation is effected in the three stages, 

A (xkl) = ~ F cos. 27r h__x, B (xyl) = ~ A cos. 27r --kY 
h s i n  a k sm b 

and V lz -~ p (zyz) = ~i B cos 27r - 
• • 

l s i n  c 

The operation carried out in practice gives 

E A'  (xkl)= ~i F '  cos. 2~ , etc., 
h s m  

where dashed symbols denote tha t  rounding off to the 
nearest integer has taken place. Since values of F'  - F 
will be uniformly distributed over the range - ½  to 
+ ½ it follows tha t  

(F ' -F)2=~,  

and F '  cos F cos 27r 1 
sin a sm 

since cos ~ 27r hx/a = sin S 2rr hx/a = ½. 

Since, moreover, the rounding-off errors made in making 

F and F'  cos. 27rhx/a whole numbers are independent, 
s i l l  

it follows tha t  

(E F'  . 2~ - F  . 2~  = ~ + ~  (4) 
s m  s i n  

In  the summation 

A'  (xbl)= Z F '  cos 27r 
h=O s i n  

(5) 

the upper limit of h is the h-index of the last reciprocal 
lattice pohlt on the/cth row of t h e / t h  layer which falls 
inside the limiting sphere (see Fig. 1). 

From (4) and (5), 
Hkl 

( A ' - A )  2= Z ~i=~Hkt 
h = l  

ff the trigonometric function is a sine. The corre- 
sponding result for a cosine is 

iA'-A)~=~Hk~+~-~s.  (6) 

The difference is so small tha t  the second alternative 
will be taken as applying to the general case. 

The second stage of the summation can then be 
written 

K~ 

B' (zyl)=[½A' (x0/ ) ] '+  Z [A' (zkl) cos2 .  ~/b]' ,  
k = l  

where Ks is the k-index of the last reciprocal lattice 
point of h-index zero on t h e / t h  layer to fall within the 
limiting sphere (see Fig. 1). 

\ 
\ \ 

"\ 

1 ,t 

1 2 3 . . . . . . .  Hkl . . . .  H01 . . . . . . . . .  H~ = H 

Fig. 1. Project ion of the reciprocal latt ice clown c*. The inner 
quadrant is the intersection of the l im i t ing  sphere w i th  the 
/ th layer of  the lat t ice; ringed points, of  number nt, belong 
t o  th i s  l aye r .  T h e  o u t e r  q u a d r a n t  o f  r ad ius  2 is t h e  in t e r -  
s ec t i on  o f  t h e  l imi t ing  s p h e r e  w i t h  t h e  zero  l aye r .  
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The result ( [½A'] ' -  ½A')2 = ~, together with (6), gives 

([ ½A' (xOl) ] ' -  ~A (xO1) )2= 1 ( ~s Uoz + ~ )  + ~, 

and so by the same reasoning as before 

Kl 
(B'-B)~=~Ho~+~s + ~ { ½ ( ~ H ~ + y l y ) + ~ } .  

k=l  
Kt 

Now ~ H~=n~-½Ho~-½K~-~, 
k--1 

where n~ is the total number  of /th layer reciprocal 
lattice points within the unique volume of the l imiting 
sphere. 

• "" (B'-B)~=I~n~ +~-Ka~ ~ ~2 

Repeat ing the process for the third stage gives 

L 
~ )  +~.~}]. 

l = l  

Making use of the relations 

L 4rrabc ~rab 
E n~=N--½no-- 

/=1 3 ,~3 2~ 2 ' 

L 7rbc 2c 
Z K~-- - ½ g - ½ n - ¼ ,  and L = - -  

/=1  -"~"-2- /~ 

reduces this to 

( 8 )2 (nabc 3rrbc c 7 )  

(P'-PV= ~c \54~+6~+~+~-s • 

The s tandard deviat ion due to ' rounding-off '  errors is 
thus 

Az = [(p,_ p)2]~ = [8~abc + 9rrAbc + 48A2c + 28A31 ~ 
3A3a2b2c. 2 . (7) 

The corresponding results for two-dimensional syn- 
theses are 

A 1 \ ~ ]  and A 2 = [  12aeb2Ae ] . 

In  both three- and two-dimensional syntheses, therefore, 

A1/A2~2  (fl2)t, i f A < a ,  b, c. 

Thus ' rounding-off '  and ' exper imen ta l '  errors are of 

equal importance when (fl2)i-_ 1 and the relative im- 
portance of the former diminishes as the inaccuracy of 
the experimental  observations increases. 

Numerica l  example  

As an example take a=b=c=lOA. ,  ~=1 .54A.  The 
table shows (cols. I and III) ,  the s tandard deviat ion 
A=(A~+A~)t  which results when the two sources of 
error operate simultaneously.  

A - - - S t a n d a r d  d e v i a t i o n  in p 
f 

T h r e e - d i m .  syn thes i s  T w o - d i m .  s3mthesis  
r A ~  ,% 
I ii~ r- III IV" 

Electrons Electrons Electrons Electrons 
(ff ')t p e r  A. ~ pe r  A. ~ p e r  A. ~ pe r  A. ~ 

0 0-053 0.005 0.124 0.012 
0.5 0.071 0-051 0.169 0.121 
1.0 0.109 0.097 0.262 0.233 
2.0 0-199 0.192 0.477 0.462 
4.0 0.387 0.384 0.929 0.922 

I t  is obvious tha t  dividing each F by a constant  r in 
order to facilitate computat ion will increase A 2 r-fold; 
use of strips of three-figure accuracy, on the other hand,  
reduces A 2 by a factor of 10. Values of A given in cols. 
II  and IV are those appropriate to this method. I t  
will be seen that  the gain in accuracy is appreciable 

when (f12)~ < 1. Booth (1946b) quotes a value for the 
probable error of the structure ampli tudes in a parti- 

cular ease which corresponds to (f12)~ = 1, and this must  
be close to the l imit  of accuracy a t ta inable  in dealing 
with moderately complex structures requiring the 
measurement  of several hundred reflexion intensities 
for a complete structure determination.  The condition 
that  the maximum computat ional  error, taken as four 
t imes the corresponding s tandard deviation, should not 
exceed the s tandard deviat ion due to exper imental  

error is 4A 2 < A1, i.e. (f12)~ > 2, or if an equivalent  method 
of three-figure accuracy is used (fl")~- > 0.2. 

I t  may  therefore be concluded tha t  the Beevers- 
Lipson method is sufficiently accurate for most cases 
encountered in practice and that, a similar method of 
three-figure accuracy is adequate in all cases. 

Thanks  are due to Dr Beevers for suggesting this 
problem to me and to Dr Booth for criticism and en- 
couragement. 
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